Search results for "Liquid Scintillator Detectors"

showing 2 items of 2 documents

The Monte Carlo simulation of the Borexino detector

2017

We describe the Monte Carlo (MC) simulation package of the Borexino detector and discuss the agreement of its output with data. The Borexino MC 'ab initio' simulates the energy loss of particles in all detector components and generates the resulting scintillation photons and their propagation within the liquid scintillator volume. The simulation accounts for absorption, reemission, and scattering of the optical photons and tracks them until they either are absorbed or reach the photocathode of one of the photomultiplier tubes. Photon detection is followed by a comprehensive simulation of the readout electronics response. The algorithm proceeds with a detailed simulation of the electronics c…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsSolar neutrinoMonte Carlo methodscintillation counter: liquidSolar neutrinosenergy resolution01 natural sciences7. Clean energyLarge volume liquid scintillator detectorHigh Energy Physics - Experiment[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Large volume liquid scintillator detectorsBorexinoPhysicsphotomultipliertrack data analysisDetectorefficiency: quantumddc:540GEANTBorexinoNeutrinophoton: yieldnumerical calculations: Monte CarloPhotomultiplierdata analysis methodenergy lossScintillatorSolar neutrinoprogrammingphoton: reflectionMonte Carlo simulationsNuclear physics0103 physical sciencesphoton: scattering[INFO]Computer Science [cs][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsbackground: radioactivityMonte Carlo simulationdetector: designScintillation010308 nuclear & particles physicsbibliographyAstronomy and AstrophysicscalibrationLarge volume liquid scintillator detectors; Monte Carlo simulations; Solar neutrinos; Astronomy and Astrophysicsattenuation: lengthpile-upelectronics: readout
researchProduct

The next generation nuclear instruments: AGATA and NEDA, and nuclear structure studies near N=Z line

2017

The first part of this thesis is devoted to the development of a large array of neutron detectors NEDA (NEutron Detector Array) and their conceptual design using Monte-Carlo simulations. Prior to the development of NEDA, the neutron detection with liquid scintillators is discussed in Chapter 2. In Chapter 3, the design criteria and simulations of NEDA are discussed. NEDA aims to build a neutron detector array with high efficiency, based on liquid scintillators. NEDA will be coupled to the high-purity γ-ray detector arrays, like AGATA, EXOGAM, to be used as a trigger or complementary detector in the contemporary nuclear physics experiments, which aim to investigate the structure of the exoti…

PhysicsNeutron DetectionDetectorsNEDANuclear Structure220806 - DETECTORES DE PARTICULASExperimental Nuclear PhysicsLiquid Scintillator Detectors220719 - ESTRUCTURA NUCLEAR220717 - REACCION NUCLEAR Y DISPERSIONNuclear ExperimentAGATAGe Semiconductor DetectorsNuclear InstrumentationNuclear Physics
researchProduct